Classes

From VLSI
Revision as of 20:50, 21 December 2009 by Petersok (talk | contribs) (→‎EE 465)
Jump to navigation Jump to search

Undergraduate EE Courses

EE 330 - Integrated Electronics

The 2009-2011 course catalog gives the following description:


E E 330. Integrated Electronics. (Cross-listed with Cpr E). (3-3) Cr. 4.Prereq: 201, credit or enrollment in 230, Cpr E 281. Semiconductor technology for integrated circuits. Modeling of integrated devices including diodes, BJTs, and MOSFETs. Physical layout. Circuit simulation. Digital building blocks and digital circuit synthesis. Analysis and design of analog building blocks. Laboratory exercises and design projects with CAD tools and standard cells. Credit for only one of E E 330 or 331 may be counted toward graduation. Nonmajor graduate credit.


As of Fall 2009, EE330 was taught by Dr. Geiger with two graduate teaching assistants running the lab. The laboratory section of EE330 is a crash-course in practical use of EDA tools for manual design, the automated digital design flow, and layout.

EE 435 - Analog VLSI Circuit Design

The 2009-2011 catalog description is:


E E 435. Analog VLSI Circuit Design. (Cross-listed with Cpr E). (3-3) Cr. 4. S.Prereq: 324, 330, 332, and either E E 322 or Stat 330. Basic analog integrated circuit and system design including design space exploration, performance enhancement strategies, operational amplifiers, references, integrated filters, and data converters. Nonmajor graduate credit.


As of Spring, 2009, EE435 was taught by Dr. Geiger with two graduate TA's coordinating the lab. Grades for the class are made up of about a dozen homeworks, two tests, and a laboratory section which includes a final project. The 2009 project assignment was the complete design and layout of a 12-bit DAC.

EE 465 - Digital VLSI Design

The following description is given for EE465 (aka CprE465) in the 2009-2011 university course catalog:


E E 465. Digital VLSI Design. (Cross-listed with Cpr E). (3-3) Cr. 4. S.Prereq: E E 330. Digital design of integrated circuits employing very large scale integration (VLSI) methodologies. Technology considerations in design. High level hardware design languages, CMOS logic design styles, area-energy-delay design space characterization, datapath blocks: arithmetic and memory, architectures and systems on a chip (SOC) considerations. VLSI chip hardware design project. Nonmajor graduate credit.

Graduate EE Courses

EE 501

EE 505

EE 507

EE 508

EE 514

CprE Courses

CprE 563

CprE 564

CprE 566