LNA Performance Simulations: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 81: | Line 81: | ||
**Enter -25 for Input Power Extrapolation Point (dBm) | **Enter -25 for Input Power Extrapolation Point (dBm) | ||
***Some experimentation might be in order. You want the resulting extrapolated line to match well with the straight portion of the IM3 components at low power. | ***Some experimentation might be in order. You want the resulting extrapolated line to match well with the straight portion of the IM3 components at low power. | ||
**Select Input Referred IP3 and Order 3rd | **Select ''Input Referred IP3'' and ''Order 3rd'' | ||
**Select either 2.44G (2*2.42G – 2.4G) or 2.38G (2*2.4G – 2.42G) for the 3rd Order Harmonic | **Select either 2.44G (2*2.42G – 2.4G) or 2.38G (2*2.4G – 2.42G) for the 3rd Order Harmonic | ||
**Select 2.4G for the 1st Order Harmonic | **Select 2.4G for the ''1st Order Harmonic'' | ||
**Select the output port on the schematic | **Select the output port on the schematic | ||
**You Should get a plot similar to Fig. 1 below | **You Should get a plot similar to Fig. 1 below | ||
***Note that I use AWD whereas the default waveform viewer in Cadence is Wavescan. | ***Note that I use AWD whereas the default waveform viewer in Cadence is Wavescan. | ||
*To View the results for the 1-dB compression point click Results -> Direct Plot -> Main Form ... | *To View the results for the 1-dB compression point click ''Results -> Direct Plot -> Main Form ...'' | ||
**Set the Analysis to pss | **Set the ''Analysis'' to ''pss'' | ||
**Set the Function to Compression Point | **Set the ''Function'' to ''Compression Point'' | ||
**Check that Select Port ( fixed R(port) ) is set | **Check that ''Select Port ( fixed R(port) )'' is set | ||
**Select Output Power for Format | **Select'' Output Power'' for ''Format'' | ||
**Enter 1 for Gain Compression (dB) | **Enter 1 for ''Gain Compression (dB)'' | ||
***We are interested in the 1-dB compression point after all | ***We are interested in the 1-dB compression point after all | ||
**Enter -25 for Input Power Extrapolation Point (dBm) | **Enter -25 for ''Input Power Extrapolation Point (dBm)'' | ||
***Again some experimentation might be in order | ***Again some experimentation might be in order | ||
**Select Input Referred 1 dB Compression | **Select ''Input Referred 1 dB'' Compression | ||
**Under the 1st Order Harmonics select 2.4G | **Under the ''1st Order'' Harmonics select 2.4G | ||
**Select the output Port on the schematic | **Select the output Port on the schematic | ||
**The resulting plot should look similar to Fig. 2 below. | **The resulting plot should look similar to Fig. 2 below. |
Revision as of 17:52, 8 April 2010
1. Power Consumption
- Ground both the input and output of your LNA. If there is no DC blocking capacitor at the output then leave it open-circuited.
- Using the Analog Design Environment choose to run a dc simulation and make sure that Save DC Operation Point is selected.
- Run the simulation. When it is finished click Results -> Print -> DC Operating Points
- Click on the DC voltage source and note the delivered power.
2. S-Parameter Simulations
- You must first instantiate ports at both the input and output of the LNA (analogLib -> Sources -> Independent -> port).
- Edit the properties of the input port
- Set the Resistance to 50 Ω and the Port number to 1.
- Set the Source type to dc.
- Edit the properties of the output port
- Set the Resistance to 50 Ω and set the Port number to 2.
- Set the Source type to dc.
- In the Analog Design Environment and choose the sp analysis type.
- Click the Port Select button and select the input and output port on the schematic.
- Set the Sweep Variable to Frequency
- Set the Sweep Range to Start-Stop and enter 1.5G for the Start value and 3.5G for the Stop value.
- Set the Sweep Type to Linear and the Number of Steps to 1000.
- Leave the Do Noise set to no.
- Click OK
- Run the simulation
- To plot the results click Results -> Direct Plot -> Main Form ...
- Make sure that the Analysis is sp and the Function is SP
- Select Plot Type as Rectangular
- Set the Modifier to dB20
- Now simply click the button corresponding to the parameter you wish to plot.
3. Noise Figure using S-parameter Simulation
- Follow steps 1 – 4d from the S-parameter simulation instructions above.
- In the sp Choosing Analyses window, set Do Noise to yes
- Select the Output Port
- Select the Input Port
- Click OK
- Run the simulation
- To plot the results click Results -> Direct Plot -> Main Form ...
- Make sure that the Analysis is sp and the Function is NF
- Set the Modifier to dB10
- Click on Plot
- IIP3 and 1-dB Compression Simulation
- You must first instantiate ports at both the input and output of the LNA (analogLib -> Sources -> Independent -> port)
- Edit the properties of the input port
- Set the Resistance to 50 Ω
- Set the Port number to 1
- Source type should be sine
- Fill in fund1 for the Frequency name 1
- Frequency 1 should be 2.4G
- This is the frequency of the desired signal
- Fill in prf for Amplitude 1 (dBm)
- This is a variable name (to be defined later) of the power of the input signal
- Click on Display second sinusoid
- Fill in fund2 for Frequency name 2
- Frequency 2 should be 2.42G
- This is the frequency of the second tone or “blocker”
- Fill in prf for Amplitude 2 (dBm)
- This sets the power of the blocker equal to the power of the input signal
- Click OK
- Edit the properties of the output port
- Set the Resistance to 50 Ω and the Port number to 2
- Set the Source type to dc
- In the Analog Design Environment we need to enable the pss analysis
- Verify that fund1 and fund2 are displayed in the Fundamental Tones section.
- Select Beat Frequency and click Auto Calculated
- The beat frequency should be 20 MHz, this is the greatest common divisor of fund1 and fund2
- Select Number of harmonics under Output harmonics and fill in the value of 123
- This field defines the number of harmonics of the beat frequency that the simulation will consider. For IIP3 tests we need to consider up to the frequency (2*2.42GHz – 2.4GHz = 2.44GHz). This means that we need 122 harmonics of the beat frequency (2.44GHz / 20MHz = 122). We use 123 harmonics to go one harmonic higher.
- Set the Accuracy Defaults (errpreset) to conservative
- Set the Additional Time for Stabilization (tstab) to 20n
- This allows any startup transients to settle before calculating the IIP3
- Click Sweep
- Choose Variable and check no for Frequency Variable?
- Fill in prf for the variable name
- This is the variable defining the power of both the input and blocker signals
- Check Start-Stop under Sweep Range and fill in -50 for Start and 0 for Stop
- Set the Sweep Type to Linear and set the Step Size to 5
- Click OK
- Run the simulation
- To view the results for IIP3 click Results -> Direct Plot -> Main Form ...
- Set the Analysis to pss
- Set the Function to IPN Curves
- Make sure that Select Port ( fixed R(port) ) is set
- Click Variable Sweep (“prf”) for Circuit Input Power
- Enter -25 for Input Power Extrapolation Point (dBm)
- Some experimentation might be in order. You want the resulting extrapolated line to match well with the straight portion of the IM3 components at low power.
- Select Input Referred IP3 and Order 3rd
- Select either 2.44G (2*2.42G – 2.4G) or 2.38G (2*2.4G – 2.42G) for the 3rd Order Harmonic
- Select 2.4G for the 1st Order Harmonic
- Select the output port on the schematic
- You Should get a plot similar to Fig. 1 below
- Note that I use AWD whereas the default waveform viewer in Cadence is Wavescan.
- To View the results for the 1-dB compression point click Results -> Direct Plot -> Main Form ...
- Set the Analysis to pss
- Set the Function to Compression Point
- Check that Select Port ( fixed R(port) ) is set
- Select Output Power for Format
- Enter 1 for Gain Compression (dB)
- We are interested in the 1-dB compression point after all
- Enter -25 for Input Power Extrapolation Point (dBm)
- Again some experimentation might be in order
- Select Input Referred 1 dB Compression
- Under the 1st Order Harmonics select 2.4G
- Select the output Port on the schematic
- The resulting plot should look similar to Fig. 2 below.
Figure 1: Sample IIP3 plot
Figure 2: 1-dB Compression Point