Classes: Difference between revisions
Line 57: | Line 57: | ||
==Graduate EE Courses== | ==Graduate EE Courses== | ||
According to the | According to the 2015-2016 [http://catalog.iastate.edu/azcourses/e_e/ course catalog], these classes are primarily for graduate students but are open to qualified undergraduates as well. | ||
===EE 501 - Analog and Mixed-Signal VLSI Circuit Design Techniques=== | ===EE 501 - Analog and Mixed-Signal VLSI Circuit Design Techniques=== | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 501. Analog and Mixed-Signal VLSI Circuit Design Techniques. (Cross-listed with | E E 501. Analog and Mixed-Signal VLSI Circuit Design Techniques. (Cross-listed with CPR E). (3-3) Cr. 4. F. Prereq: E E 435 | ||
Design techniques for analog and mixed-signal VLSI circuits. Amplifiers; operational amplifiers, transconductance amplifiers, finite gain amplifiers and current amplifiers. Linear building blocks; differential amplifiers, current mirrors, references, cascading and buffering. Performance characterization of linear integrated circuits; offset, noise, sensitivity and stability. Layout considerations, simulation, yield and modeling for high-performance linear integrated circuits. | |||
</pre></code></blockquote> | </pre></code></blockquote> | ||
As of Fall 2009, EE501 is taught by Dr. Degang Chen. In the past, grades have been based strongly on lab work, and particularly on two large projects. | As of Fall 2009, EE501 is taught by Dr. Degang Chen. In the past, grades have been based strongly on lab work, and particularly on two large projects. | ||
===EE | ===EE 504 - Power Management for VLSI Systems=== | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 504. Power Management for VLSI Systems. | |||
(Cross-listed with CPR E). (3-3) Cr. 4. Prereq: E E 435, Credit or Registration for E E 501 | |||
Theory, design and applications of power management and regulation circuits (Linear and switching regulators, battery chargers, and reference circuits) including: Architectures, Performance metrics and characterization, Noise and stability analysis, Practical implementation and on-chip integration issues, design considerations for portable, wireless, and RF SoCs. | |||
</pre></code></blockquote> | </pre></code></blockquote> | ||
EE504 was offered as an experimental course in Fall 2009 and taught by Dr. Fayed. | EE504 was offered as an experimental course in Fall 2009 and taught by Dr. Fayed. It may be offered as an alternating-year course in the future. Emphasis was on DC-DC converters (both linear and switching), including performance parameters, circuit topology, and stability considerations. Coursework included two tests and several homework assignments. During the first few weeks of laboratory, students performed bench characterization of two catalog switching converters; the rest of the lab time was spent on a final project which entailed the complete design of a buck converter. | ||
===EE 505 - CMOS and BiCMOS Data Conversion Circuits=== | ===EE 505 - CMOS and BiCMOS Data Conversion Circuits=== | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 505. CMOS and BiCMOS Data Conversion Circuits. (Cross-listed with | E E 505. CMOS and BiCMOS Data Conversion Circuits. | ||
(Cross-listed with CPR E). (3-3) Cr. 4. Alt. S., offered even-numbered years. Prereq: E E 501 | |||
Theory, design and applications of data conversion circuits (A/D and D/A converters) including: architectures, characterization, quantization effects, conversion algorithms, spectral performance, element matching, design for yield, and practical comparators, implementation issues. | |||
</pre></code></blockquote> | </pre></code></blockquote> | ||
===EE | ===EE 506 - Design of CMOS Phase-Locked Loops=== | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 506. Design of CMOS Phase-Locked Loops. | |||
(Cross-listed with CPR E). (3-3) Cr. 4. Prereq: E E 435 or E E 501 or instructor approval | |||
Analysis and design of phase-locked loops implemented in modern CMOS processes including: architectures, performance metrics, and characterization; noise and stability analysis; and design issues of phase-frequency detectors, charge pumps, loop filters (passive and active), voltage controlled oscillators, and frequency dividers. | |||
</pre></code></blockquote> | </pre></code></blockquote> | ||
Line 89: | Line 96: | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 507. VLSI Communication Circuits. (Cross-listed with | E E 507. VLSI Communication Circuits. | ||
(Cross-listed with CPR E). (3-3) Cr. 4. Alt. S., offered odd-numbered years. Prereq: E E 435 or E E 501 | |||
Phase-locked loops, frequency synthesizers, clock and data recovery circuits, theory and implementation of adaptive filters, low-noise amplifiers, mixers, power amplifiers, transmitter and receiver architectures. | |||
</pre></code></blockquote> | </pre></code></blockquote> | ||
Line 95: | Line 104: | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 508. Filter Design and Applications. (3-3) Cr. 4.Prereq: 501 | E E 508. Filter Design and Applications. | ||
(3-3) Cr. 4. Prereq: E E 501 | |||
Filter design concepts. Approximation and synthesis. Transformations. Continuous-time and discrete time filters. Discrete, active and integrated synthesis techniques. | |||
</pre></code></blockquote> | </pre></code></blockquote> | ||
===EE 514=== | ===EE 514 - Microwave Engineering=== | ||
<blockquote><code><pre style="white-space:normal;"> | <blockquote><code><pre style="white-space:normal;"> | ||
E E 514. Microwave Engineering. (Dual-listed with 414). (3-3) Cr. 4. F.Prereq: 230, 311 | E E 514. Microwave Engineering. | ||
(Dual-listed with E E 414). (3-3) Cr. 4. F. Prereq: E E 230, E E 311 | |||
Principles, analyses, and instrumentation used in the microwave portion of the electromagnetic spectrum. Wave theory in relation to circuit parameters. S parameters, couplers, discontinuities, and microwave device equivalent circuits. RF amplifier design, microwave sources, optimum noise figure and maximum power designs. Microwave filters and oscillators. | |||
</pre></code></blockquote> | </pre></code></blockquote> |
Revision as of 20:22, 15 October 2015
Undergraduate EE Courses
EE 230 - Electronic Circuits and Systems
- For more wiki content related to this class, see EE230
The 2015-2016 course catalog gives the following description:
E E 230. Electronic Circuits and Systems. (3-3) Cr. 4. F.S. Prereq: E E 201, MATH 267, PHYS 222
Frequency domain characterization of electronic circuits and systems, transfer functions, sinusoidal steady state response. Time domain models of linear and nonlinear electronic circuits, linearization, small signal analysis. Stability and feedback circuits. Operational amplifiers, device models, linear and nonlinear applications, transfer function realizations. A/D and D/A converters, sources of distortions, converter linearity and spectral characterization, applications. Design and laboratory instrumentation and measurements.
As of Fall 2015, EE230 was taught by Dr. Tuttle with four teaching assistants running the lab.
Dr. Tuttle's course website for EE230 can be found here
Dr. Geiger's course website for EE230 can be found here
EE 330 - Integrated Electronics
- For more wiki content related to this class, see EE330
The 2015-2016 course catalog gives the following description:
E E 330. Integrated Electronics. (Cross-listed with CPR E). (3-3) Cr. 4. Prereq: E E 201, credit or enrollment in E E 230, CPR E 281
Semiconductor technology for integrated circuits. Modeling of integrated devices including diodes, BJTs, and MOSFETs. Physical layout. Circuit simulation. Digital building blocks and digital circuit synthesis. Analysis and design of analog building blocks. Laboratory exercises and design projects with CAD tools and standard cells.
As of Fall 2015, EE330 was taught by Dr. Geiger with two undergraduate teaching assistants running the lab. The laboratory section of EE330 is a crash-course in practical use of EDA tools for manual design, the automated digital design flow, and layout.
Dr. Geiger's course website for EE330 can be found here
EE 435 - Analog VLSI Circuit Design
- For more wiki content related to this class, see EE435
The 2015-2016 course catalog gives the following description:
E E 435. Analog VLSI Circuit Design. (Cross-listed with CPR E). (3-3) Cr. 4. S. Prereq: E E 324, E E 330, E E 332, and either E E 322 or STAT 330
Basic analog integrated circuit and system design including design space exploration, performance enhancement strategies, operational amplifiers, references, integrated filters, and data converters.
As of Spring 2015, EE435 was taught by Dr. Geiger. Grades for the class are made up of about a dozen homework assignments, two tests, and a laboratory section which includes a final project. The 2009 project assignment was the complete design and layout of a 12-bit DAC.
Dr. Geiger's course website for EE435 can be found here
EE 465 - Digital VLSI Design
- For more wiki content related to this class, see EE465
The 2015-2016 course catalog gives the following description:
E E 465. Digital VLSI Design. (Cross-listed with CPR E). (3-3) Cr. 4. S. Prereq: E E 330
Digital design of integrated circuits employing very large scale integration (VLSI) methodologies. Technology considerations in design. High level hardware design languages, CMOS logic design styles, area-energy-delay design space characterization, datapath blocks: arithmetic and memory, architectures and systems on a chip (SOC) considerations. VLSI chip hardware design project.
As of Fall 2015, EE465 was taught by Dr. Chu with one graduate teaching assistant running the lab.
Dr. Chu's course website for EE465 is located in Blackboard, but the Lab page and Homework page are publicly available.
Graduate EE Courses
According to the 2015-2016 course catalog, these classes are primarily for graduate students but are open to qualified undergraduates as well.
EE 501 - Analog and Mixed-Signal VLSI Circuit Design Techniques
E E 501. Analog and Mixed-Signal VLSI Circuit Design Techniques. (Cross-listed with CPR E). (3-3) Cr. 4. F. Prereq: E E 435
Design techniques for analog and mixed-signal VLSI circuits. Amplifiers; operational amplifiers, transconductance amplifiers, finite gain amplifiers and current amplifiers. Linear building blocks; differential amplifiers, current mirrors, references, cascading and buffering. Performance characterization of linear integrated circuits; offset, noise, sensitivity and stability. Layout considerations, simulation, yield and modeling for high-performance linear integrated circuits.
As of Fall 2009, EE501 is taught by Dr. Degang Chen. In the past, grades have been based strongly on lab work, and particularly on two large projects.
EE 504 - Power Management for VLSI Systems
E E 504. Power Management for VLSI Systems.
(Cross-listed with CPR E). (3-3) Cr. 4. Prereq: E E 435, Credit or Registration for E E 501
Theory, design and applications of power management and regulation circuits (Linear and switching regulators, battery chargers, and reference circuits) including: Architectures, Performance metrics and characterization, Noise and stability analysis, Practical implementation and on-chip integration issues, design considerations for portable, wireless, and RF SoCs.
EE504 was offered as an experimental course in Fall 2009 and taught by Dr. Fayed. It may be offered as an alternating-year course in the future. Emphasis was on DC-DC converters (both linear and switching), including performance parameters, circuit topology, and stability considerations. Coursework included two tests and several homework assignments. During the first few weeks of laboratory, students performed bench characterization of two catalog switching converters; the rest of the lab time was spent on a final project which entailed the complete design of a buck converter.
EE 505 - CMOS and BiCMOS Data Conversion Circuits
E E 505. CMOS and BiCMOS Data Conversion Circuits.
(Cross-listed with CPR E). (3-3) Cr. 4. Alt. S., offered even-numbered years. Prereq: E E 501
Theory, design and applications of data conversion circuits (A/D and D/A converters) including: architectures, characterization, quantization effects, conversion algorithms, spectral performance, element matching, design for yield, and practical comparators, implementation issues.
EE 506 - Design of CMOS Phase-Locked Loops
E E 506. Design of CMOS Phase-Locked Loops.
(Cross-listed with CPR E). (3-3) Cr. 4. Prereq: E E 435 or E E 501 or instructor approval
Analysis and design of phase-locked loops implemented in modern CMOS processes including: architectures, performance metrics, and characterization; noise and stability analysis; and design issues of phase-frequency detectors, charge pumps, loop filters (passive and active), voltage controlled oscillators, and frequency dividers.
EE 507 - VLSI Communication Circuits
E E 507. VLSI Communication Circuits.
(Cross-listed with CPR E). (3-3) Cr. 4. Alt. S., offered odd-numbered years. Prereq: E E 435 or E E 501
Phase-locked loops, frequency synthesizers, clock and data recovery circuits, theory and implementation of adaptive filters, low-noise amplifiers, mixers, power amplifiers, transmitter and receiver architectures.
EE 508 - Filter Design & Applications
E E 508. Filter Design and Applications.
(3-3) Cr. 4. Prereq: E E 501
Filter design concepts. Approximation and synthesis. Transformations. Continuous-time and discrete time filters. Discrete, active and integrated synthesis techniques.
EE 514 - Microwave Engineering
E E 514. Microwave Engineering.
(Dual-listed with E E 414). (3-3) Cr. 4. F. Prereq: E E 230, E E 311
Principles, analyses, and instrumentation used in the microwave portion of the electromagnetic spectrum. Wave theory in relation to circuit parameters. S parameters, couplers, discontinuities, and microwave device equivalent circuits. RF amplifier design, microwave sources, optimum noise figure and maximum power designs. Microwave filters and oscillators.