Math: Difference between revisions
Jump to navigation
Jump to search
New page: <math>\tau<\math> <math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2... |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\tau</math> | |||
<math>\tau< | |||
Revision as of 17:29, 16 July 2014
<math>\tau</math>
<math>
\operatorname{erfc}(x) =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>