Math: Difference between revisions

From Reconfigurable Computing Wiki
Jump to navigation Jump to search
New page: <math>\tau<\math> <math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2...
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Math Test


 
<math>\tau</math>
<math>\tau<\math>
 


  <math>
  <math>

Latest revision as of 17:31, 16 July 2014

Math Test

<math>\tau</math>
<math>
 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>