GPU computing with CUDA

Lecture 3: CUDA Memories
Hardware Implementation of CUDA Memories

Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read/only per-grid constant memory
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>register</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **“automatic” scalar variables** without qualifier reside in a register
 - compiler will spill to thread local memory
- **“automatic” array variables** without qualifier reside in thread-local memory
CUDA Variable Type Performance

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int var;</code></td>
<td>register</td>
<td>1x</td>
</tr>
<tr>
<td><code>int array_var[10];</code></td>
<td>local</td>
<td>100x</td>
</tr>
<tr>
<td><code>__shared__ int shared_var;</code></td>
<td>shared</td>
<td>1x</td>
</tr>
<tr>
<td><code>__device__ int global_var;</code></td>
<td>global</td>
<td>100x</td>
</tr>
<tr>
<td><code>__constant__ int constant_var;</code></td>
<td>constant</td>
<td>1x</td>
</tr>
</tbody>
</table>

- **Scalar variables** reside in fast, on-chip registers.
- **Shared variables** reside in fast, on-chip memories.
- **Thread-local arrays & global variables** reside in uncached off-chip memory.
- **Constant variables** reside in cached off-chip memory.
CUDA Variable Type Scale

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Instances</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int var;</code></td>
<td>100,000s</td>
<td>1</td>
</tr>
<tr>
<td><code>int array_var[10];</code></td>
<td>100,000s</td>
<td>1</td>
</tr>
<tr>
<td><code>__shared__ int shared_var;</code></td>
<td>100s</td>
<td>100s</td>
</tr>
<tr>
<td><code>__device__ int global_var;</code></td>
<td>1</td>
<td>100,000s</td>
</tr>
<tr>
<td><code>__constant__ int constant_var;</code></td>
<td>1</td>
<td>100,000s</td>
</tr>
</tbody>
</table>

- 100Ks per-thread variables, R/W by 1 thread
- 100s shared variables, each R/W by 100s of threads
- 1 global variable is R/W by 100Ks threads
- 1 constant variable is readable by 100Ks threads
Where to declare variables?

Can host access it?

- **Yes**
 - Outside of any function
 - `__constant__` int constant_var;
 - `__device__` int global_var;
 - `__shared__` int shared_var;
- **No**
 - In the kernel
 - int var;
 - int array_var[10];
Example – thread-local variables

// motivate per-thread variables with
// Ten Nearest Neighbors application
__global__ void ten_nn(float2 *result, float2 *ps, float2 *qs,
 size_t num_qs)
{
 // p goes in a register
 float2 p = ps[threadIdx.x];

 // per-thread heap goes in off-chip memory
 float2 heap[10];

 // read through num_qs points, maintaining
 // the nearest 10 qs to p in the heap
 ...
 // write out the contents of heap to result
 ...
}
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
 if(i > 0)
 {
 // each thread loads two elements from global memory
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // what are the bandwidth requirements of this kernel?
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}

Two loads
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // How many times does this kernel load input[i]?
 int x_i = input[i]; // once by thread i
 int x_i_minus_one = input[i-1]; // again by thread i+1

 result[i] = x_i - x_i_minus_one;
 }
}
Example – shared variables

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{
 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)
 {
 // Idea: eliminate redundancy by sharing data
 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i - x_i_minus_one;
 }
}
Example – shared variables

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{

 // shorthand for threadIdx.x
 int tx = threadIdx.x;

 // allocate a __shared__ array, one element per thread
 __shared__ int s_data[BLOCK_SIZE];

 // each thread reads one element to s_data
 unsigned int i = blockDim.x * blockIdx.x + tx;
 s_data[tx] = input[i];

 // avoid race condition: ensure all loads
 // complete before continuing
 __syncthreads();
 ...
}

Example – shared variables

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
 ...
 if (tx > 0)
 result[i] = s_data[tx] - s_data[tx-1];
 else if (i > 0)
 {
 // handle thread block boundary
 result[i] = s_data[tx] - input[i-1];
 }
}
Example – shared variables

// when the size of the array isn’t known at compile time...
__global__ void adj_diff(int *result, int *input)
{
 // use extern to indicate a __shared__ array will be
 // allocated dynamically at kernel launch time
 extern __shared__ int s_data[];
 ...
}

// pass the size of the per-block array, in bytes, as the third
// argument to the triple chevrons
adj_diff<<<num_blocks, block_size, block size * sizeof(int)>>>(r,i);
About Pointers

- Yes, you can use them!
- You can point at any memory space per se:

```c
__device__ int my_global_variable;
__constant__ int my_constant_variable = 13;

__global__ void foo(void)
{
    __shared__ int my_shared_variable;

    int *ptr_to_global = &my_global_variable;
    const int *ptr_to_constant = &my_constant_variable;
    int *ptr_to_shared = &my_shared_variable;
    ...
    *ptr_to_global = *ptr_to_shared;
}
```
About Pointers

- The address obtained by taking the address of a `__device__`, `__shared__` or `__constant__` variable can only be used in device code.

- The address of a `__device__` or `__constant__` variable obtained through `cudaGetSymbolAddress()` can only be used in host code.
Don’t confuse the compiler!

```c
__device__ int my_global_variable;
__global__ void foo(int *input)
{
  __shared__ int my_shared_variable;

  int *ptr = 0;
  if(input[threadIdx.x] % 2)
    ptr = &my_global_variable;
  else
    ptr = &my_shared_variable;
  // where does ptr point?
}
```

Warning: Cannot tell what pointer points to, assuming global memory space
Advice

- Prefer dereferencing pointers in simple, regular access patterns
- Avoid propagating pointers
- Avoid pointers to pointers
 - The GPU would rather not pointer chase
 - Linked lists will not perform well
- Pay attention to compiler warning messages
 - Warning: Cannot tell what pointer points to, assuming global memory space
 - Crash waiting to happen
A Common Programming Strategy

- Global memory resides in device memory (DRAM)
 - Much slower access than shared memory
- **Tile data** to take advantage of fast shared memory:
 - Generalize from `adjacent_difference` example
 - Divide and conquer
A Common Programming Strategy

- Partition data into subsets that fit into shared memory
A Common Programming Strategy

Handle each data subset with one thread block
A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
A Common Programming Strategy

Perform the computation on the subset from *shared memory*
A Common Programming Strategy

Copy the result from **shared memory** back to global memory
A Common Programming Strategy

- Carefully partition data according to access patterns
- Read-only ➔ **constant** memory (fast)
- R/W & shared within block ➔ **shared** memory (fast)
- R/W within each thread ➔ registers (fast)
- Indexed R/W within each thread ➔ local memory (slow)
- R/W inputs/results ➔ cudaMalloc ‘ed global memory (slow)
Communication Through Memory

Question:

```c
__global__ void race(void)
{
    __shared__ int my_shared_variable;
    my_shared_variable = threadIdx.x;

    // what is the value of
    // my_shared_variable?
}
```
Communication Through Memory

- This is a **race condition**
- The result is **undefined**
- The order in which threads access the variable is undefined without explicit coordination
- Use barriers (e.g., `__syncthreads`) or atomic operations (e.g., `atomicAdd`) to enforce **well-defined semantics**
Communication Through Memory

- Use `__syncthreads` to ensure data is ready for access

```c
__global__ void share_data(int *input)
{
    __shared__ int data[BLOCK_SIZE];
    data[threadIdx.x] = input[threadIdx.x];
    __syncthreads();
    // the state of the entire data array
    // is now well-defined for all threads
    // in this block
}
```
Communication Through Memory

Use atomic operations to ensure exclusive access to a variable

```
// assume *result is initialized to 0
__global__ void sum(int *input, int *result)
{
    atomicAdd(result, input[threadIdx.x]);

    // after this kernel exits, the value of
    // *result will be the sum of the input
}
```
Resource Contention

- Atomic operations aren’t cheap!
- They imply **serialized access** to a variable

```c
__global__ void sum(int *input, int *result)
{
    atomicAdd(result, input[threadIdx.x]);
}

... // how many threads will contend
... // for exclusive access to result?
sum<<<B,N/B>>>(input,result);
```
Hierarchical Atomics

Divide & Conquer

- Per-thread `atomicAdd` to a __shared__ partial sum
- Per-block `atomicAdd` to the total sum
Hierarchical Atomics

__global__ void sum(int *input, int *result)
{
 __shared__ int partial_sum;

 // thread 0 is responsible for
 // initializing partial_sum
 if(threadIdx.x == 0)
 partial_sum = 0;
 __syncthreads();

 ...
}

Hierarchical Atomics

```c
__global__ void sum(int *input, int *result) {
    ...
    // each thread updates the partial sum
    atomicAdd(&partial_sum, input[threadIdx.x]);
    __syncthreads();

    // thread 0 updates the total sum
    if(threadIdx.x == 0)
        atomicAdd(result, partial_sum);
}
```
Use barriers such as `__syncthreads` to wait until `__shared__` data is ready.

Prefer barriers to atomics when data access patterns are **regular** or **predictable**.

Prefer atomics to barriers when data access patterns are **sparse** or **unpredictable**.

Atomics to `__shared__` variables are much faster than atomics to global variables.

Don’t synchronize or serialize unnecessarily.
Matrix Multiplication Example

- Generalize `adjacent_difference` example
- \(AB = A \times B \)
 - Each element \(AB_{ij} \)
 - \(= \text{dot}(\text{row}(A, i), \text{col}(B, j)) \)
- Parallelization strategy
 - Thread \(\rightarrow AB_{ij} \)
 - 2D kernel
First Implementation

```c
__global__ void mat_mul(float *a, float *b,
                        float *ab, int width)
{
    // calculate the row & col index of the element
    int row = blockIdx.y*blockDim.y + threadIdx.y;
    int col = blockIdx.x*blockDim.x + threadIdx.x;

    float result = 0;

    // do dot product between row of a and col of b
    for(int k = 0; k < width; ++k)
        result += a[row*width+k] * b[k*width+col];

    ab[row*width+col] = result;
}
```
How will this perform?

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many loads per term of dot product?</td>
<td>2 floats (a & b) = 8 Bytes</td>
</tr>
<tr>
<td>How many floating point operations?</td>
<td>2 (multiply & addition)</td>
</tr>
<tr>
<td>Global memory access to flop ratio (GMAC)</td>
<td>8 Bytes / 2 ops = 4 B/op</td>
</tr>
<tr>
<td>What is the peak fp performance of GeForce GTX 480?</td>
<td>1.35 TFLOPS</td>
</tr>
<tr>
<td>Lower bound on bandwidth required to reach peak fp performance</td>
<td>GMAC * Peak FLOPS = 4 * 1.350 = 5.4 TB/s</td>
</tr>
<tr>
<td>What is the actual memory bandwidth of GeForce GTX 480?</td>
<td>177 GB/s</td>
</tr>
<tr>
<td>Then what is an upper bound on performance of our implementation?</td>
<td>Actual BW / GMAC = 177 / 4 = 44 GFLOPS</td>
</tr>
</tbody>
</table>
Idea: Use `_shared_` memory to reuse global data

- Each input element is read by `width` threads.
- Load each element into `_shared_` memory and have several threads use the local version to reduce the memory bandwidth.
Tiled Multiply

- Partition kernel loop into phases
- Load a tile of both matrices into __shared__ each phase
- Each phase, each thread computes a partial result
Better Implementation

```c
__global__ void mat_mul(float *a, float *b,
                         float *ab, int width)
{

    // shorthand
    int tx = threadIdx.x, ty = threadIdx.y;
    int bx = blockIdx.x, by = blockIdx.y;

    // allocate tiles in __shared__ memory
    __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
    __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

    // calculate the row & col index
    int row = by*blockDim.y + ty;
    int col = bx*blockDim.x + tx;

    float result = 0;
```
// loop over the tiles of the input in phases
for(int p = 0; p < width/TILE_WIDTH; ++p)
{
 // collaboratively load tiles into __shared__
 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(m*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 // dot product between row of s_a and col of s_b
 for(int k = 0; k < TILE_WIDTH; ++k)
 {
 result += s_a[ty][k] * s_b[k][tx];
 __syncthreads();
 }
}

ab[row*width+col] = result;
Use of Barriers in `mat_mul`

- Two barriers per phase:
 - `__syncthreads` after all data is loaded into `__shared__` memory
 - `__syncthreads` after all data is read from `__shared__` memory
 - Note that second `__syncthreads` in phase p guards the load in phase $p+1$

- Use barriers to guard data
 - Guard against using uninitialized data
 - Guard against bashing live data
First Order Size Considerations

- Each **thread block** should have many threads
 - \(\text{TILE}_\text{WIDTH} = 16 \rightarrow 16 \times 16 = 256 \) threads

- There should be many thread blocks
 - \(1024 \times 1024 \) matrices \(\rightarrow 64 \times 64 = 4096 \) thread blocks
 - \(\text{TILE}_\text{WIDTH} = 16 \rightarrow \) gives each SM 4 blocks, 1024 threads
 - Full **occupancy**

- Each thread block performs \(2 \times 256 = 512 \times 4\text{B} \) loads
 - for \(256 \times (2 \times 16) = 8,192 \) fp ops \((0.25 \text{ B/op}) \)
 - Compare to 4B/op
TILE_SIZE Effects

![Bar chart showing the effects of different tile sizes on GFLOPS](chart.png)
Effective use of different memory resources reduces the number of accesses to global memory.

- These resources are finite!

- The more memory locations each thread requires → the fewer threads an SM can accommodate.

Memory Resources as Limit to Parallelism

<table>
<thead>
<tr>
<th>Resource</th>
<th>Per GTX480 SM</th>
<th>Full Occupancy on GTX480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>32768</td>
<td><= 32768 / 1024 threads = 32 per thread</td>
</tr>
<tr>
<td>shared Memory</td>
<td>48KB</td>
<td><= 48KB / 8 blocks = 6KB per block</td>
</tr>
</tbody>
</table>
Final Thoughts

- Effective use of CUDA memory hierarchy decreases bandwidth consumption to increase **throughput**
- Use `__shared__` memory to eliminate redundant loads from global memory
 - Use `__syncthreads` barriers to protect `__shared__` data
 - Use atomics if access patterns are sparse or unpredictable
- Optimization comes with a development cost
- Memory resources ultimately limit parallelism